Analysis of Indonesia’s Export Unit Value Index in 2023 Using Descriptive Analysis and K-Means Clustering Method Based on Data from the International Trade Centre (ITC) and the 2023 Annual Export Report by BPS (Statistics Indonesia)

Authors

  • Jena Jena Sarita Institut Teknologi Insan Cendekia Mandiri
  • Arya Satria Armanda Institut Teknologi Insan Cendekia Mandiri
  • Muhammad Fredo Anggara Institut Teknologi Insan Cendekia Mandiri
  • Ika Maylani Institut Teknologi Insan Cendekia Mandiri
  • Mokhamad Eldon Universitas Tulungagung

Keywords:

Export Unit Value Index, SITC, K-Means Clustering, Export Commodities

Abstract

This research aims to analyze the unit value index of Indonesian exports in 2023 based on monthly data according to the 3-digit SITC code. The export unit value index is an indicator that measures changes in export commodity prices compared to the base year 2018. Using descriptive analysis and K-Means clustering methods, this research explores the patterns and characteristics of Indonesia’s export unit value index and groups commodities based on the similarity of their index values. The research results show that there are fluctuations in the export unit value index for various commodities throughout 2023, with several commodities experiencing significant price increases or decreases. Through clustering analysis, export commodities can be grouped into several clusters based on similar index values, providing an overview of commodities that have similar price trends. These findings can provide valuable information for policy makers and business actors in developing appropriate export strategies.

References

Abdurrahman, G. (2016). Clustering Data Ujian Tengah Semester (UTS) Data Mining. Jurnal Sistem & Teknologi Informasi Indonesia, Vol. 1, No. 2, Agustus 2016, 1, 73.

Ahmad Ari Aldino, A. S. (2021, desember). Application of Support Vector Machine (SVM) Algorithm in Classification of Low-Cape Communities in Lampung Timur. Building of Informatics, Technology and Science (BITS),

, 325-330. doi:10.47065/bits.v3i3

Fitri Marisa, A. L. (2021). DATA MINING KONSEP DAN PENERAPANNYA.

Sleman: CV BUDI UTAMA.

Gustientiedina, G. M. (2019). Penerapan Algoritma K-Means Untuk Clustering

Data Obat-Obatan. Jurnal Nasional Teknologi Dan Sistem Informasi, 17-

Khomarudin, A. N. (2016). Teknik Data Mining : Algoritma K-Means Clustering.

Komunitas eLearning IlmuKomputer.Com Copyright © 2003-2016

IlmuKomputer.Com, 1.

Setiawansyah. (2020, juni). Penerapan Metode Agile untuk Pengembangan Online

Analytical. Jurnal CoreIT, 1, 50-56.

Syahra, Y. (2018). Penerapan Data Mining Dalam Pengelompokkan Data Nilai Siswa Untuk Penentuan Jurusan Siswa Pada SMA Tamora Menggunakan Algoritma K-Means Clustering. Sains dan Komputer (SAINTIKOM) Vol.17, No.2, Agustus 2018, pp. 228-233, 1, 229.

Downloads

Published

2025-07-30

How to Cite

Jena Sarita , J., Satria Armanda, A., Fredo Anggara, M. ., Maylani, I., & Eldon, M. (2025). Analysis of Indonesia’s Export Unit Value Index in 2023 Using Descriptive Analysis and K-Means Clustering Method Based on Data from the International Trade Centre (ITC) and the 2023 Annual Export Report by BPS (Statistics Indonesia). International Conference On Economics Business Management And Accounting (ICOEMA), 4(1), 1340-1349. Retrieved from https://conference.untag-sby.ac.id/index.php/icoema/article/view/6131

Issue

Section

Articles